Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao, ${ }^{\text {a }}$ Li-Hua Huo, ${ }^{\text {a }}$
Zhao-Peng Deng ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a College of Chemistry and Materials Science, }}$ Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in solvent or counterion
R factor $=0.024$
$w R$ factor $=0.063$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[diaqua(imidazole)cadmium(II)]-μ-3-carboxylatophenoxyacetato] trihydrate]

In the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the carboxylatophenoxyacetate dianion links the water- and imidazole-coordinated Cd atoms into a zigzag chain that runs along the c axis of the monoclinic unit cell; the chelation by the carboxylate arms leads to a seven-coordinate pentagonalbipyramidal geometry for the Cd atom. The chains are linked into a three-dimensional network by hydrogen bonds.

Comment

Structural reports on metal derivatives of 3-carboxyphenoxyacetic acid (Gao, Li et al., 2004; Li et al., 2004) comprise one part of the studies on metal complexes of the 2-, 3- and 4-carboxyphenoxyacetic acids. An earlier attempt to synthesize the benzimidazole adduct of cadmium 3-carboxyphenoxyacetate by reacting the cadmium carboxylate, prepared in situ, yielded only benzimidazolium hydrogen bis(3-carboxyphenoxyacetate) (Gao, Huo et al., 2004). In other attempts to synthesize adducts with nitrogen-containing heterocycles, the metal complexes that are isolated have the 3carboxyphenoxyacetate dianion uncoordinated to the metal atom (Zhao, Gu, Gao et al., 2005; Zhao, Gu, Huo et al., 2005). Possibly, the isolation of the present cadmium-imidazole adduct, (I), should be attributed to the particularly small size of the nitrogen-containing heterocycle, as well as the participation of the heterocycle in hydrogen-bonding interactions. The dianion chelates to two adjacent Cd atoms through its carboxylate arms; the four O atoms along with a water molecule constitute a pentagonal plane. The heterocycle and another water molecule occupy the apical sites (Fig. 1). The manner of bridging by the dianion leads to a helical chain that runs along the c axis (Fig. 2); the chains are linked into a threedimensional network by hydrogen bonds (Table 2).

Experimental

Cadmium dinitrate tetrahydrate ($0.31 \mathrm{~g}, 1 \mathrm{mmol}$) was added to an aqueous solution of 3 -carboxyphenoxyacetic acid $(0.19 \mathrm{~g}, 1 \mathrm{mmol})$. The pH was adjusted to 7 with 0.1 M sodium hydroxide. Imidazole

Received 7 March 2005 Accepted 9 March 2005 Online 18 March 2005

Figure 1
ORTEPII (Johnson, 1976) plot of a portion of the chain of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. The minor component of the disordered water molecule O5w is not shown. [Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.]

Figure 2
ORTEPII (Johnson, 1976) plot of the polymeric chain structure. The uncoordinated water molecules are not shown.
($0.14 \mathrm{~g}, 2 \mathrm{mmol}$) was then added. Colorless crystals separated from the clear solution after several days. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{CdN}_{2} \mathrm{O}_{10}$: C 31.02, H 4.34, N 6.03\%; found: C 31.19, H 4.30, N 6.06\%.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)-\right.$
$\left(\mathrm{H}_{2} \mathrm{O}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=464.70$
Monoclinic, $P 2_{1} / n$
$a=8.574(2) \AA$
$b=11.467(2) \AA$
$c=18.374(3) \AA$
$\beta=101.88(3)^{\circ}$
$V=1767.9(6) \AA^{3}$
$Z=4$
$D_{x}=1.746 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 15434 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.29 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.36 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Rigaki R-AXIS RAPID IP
diffractometer
ω scans
Absorption correction: multi-scan
$\quad($ ABSCOR; Higashi, 1995)
$T_{\min }=0.478, T_{\max }=0.801$
16669 measured reflections

3995 independent reflections
3607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.063$
$S=1.06$
3995 reflections
237 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0394 P)^{2}\right. \\
& +0.5011 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.418(2)$	$\mathrm{Cd} 1-\mathrm{O} 1 w$	$2.270(2)$
$\mathrm{Cd} 1-\mathrm{O} 2$	$2.398(1)$	$\mathrm{Cd} 1-\mathrm{O} 2 w$	$2.350(2)$
$\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.424(2)$	$\mathrm{Cd} 1-\mathrm{N} 1$	$2.244(2)$
$\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.484(2)$		
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$53.98(5)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{i}}$	$53.00(5)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$89.16(5)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1 w$	$90.63(8)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{i}}$	$140.81(5)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2 w$	$130.29(6)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1 w$	$81.97(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$90.60(7)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2 w$	$138.24(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 1 w$	$88.01(7)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	$93.80(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 2 w$	$77.38(6)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$143.11(5)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 1$	$96.11(6)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{i}}$	$162.83(5)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 2 w$	$84.25(7)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1 w$	$86.15(7)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{N} 1$	$175.58(7)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 2 w$	$85.97(6)$	$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{N} 1$	$98.17(7)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 1$	$90.32(6)$		

Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 5$	0.82	1.94	2.760 (3)	171
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4 w^{\mathrm{ii}}$	0.81	1.85	2.662 (3)	176
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 5 w^{\text {ii }}$	0.82	2.03	2.828 (3)	163
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 2^{\text {iii }}$	0.83	1.88	2.703 (2)	171
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 4^{\text {iii }}$	0.82	2.02	2.809 (2)	161
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O}{ }^{\text {i }}$	0.83	2.03	2.839 (2)	163
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 3 w^{\text {iv }}$	0.83	1.96	2.775 (3)	172
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 1$	0.83	1.84	2.663 (3)	172
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 4 w$	0.83	1.97	2.729 (5)	152
$\mathrm{O} 5 w-\mathrm{H} 5 \mathrm{w} 2 \cdots \mathrm{O}^{\text {v }}$	0.82	2.16	2.784 (3)	133
$\mathrm{O} 5 w^{\prime}-\mathrm{H} 5 \mathrm{w} 3 \cdots \mathrm{O}^{\text {v }}$	0.83	2.30	2.799 (8)	119
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O} 3 w^{\text {vi }}$	0.86	1.97	2.823 (3)	170

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $1-x, 1-y, 1-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (v) $2-x, 2-y, 1-z$; (vi) $-x, 1-y, 1-z$.

The carbon-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ for the aromatic H atoms and $0.97 \AA$ for the others) and were included in the refinement with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$ in the riding-model approximation. The amino H atom of the nitro-gen-containing heterocycle was similarly treated $[\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$. One of the uncoordinated water molecules, O5w, is disordered over two positions; the occupancies refined to 0.747 (7):0.253 (7). The H atoms of the water molecules, including the disorder components, were placed at chemically sensible positions on the basis of $\mathrm{O}-\mathrm{H}$ distances of approximately $0.82 \AA$ and hydrogen bonds of approximately $2 \AA$. These were not refined; their displacement parameters were also set to 1.2 times $U_{\text {eq }}$ of the O atoms. Positioning the H atoms in this way leads to a satisfactory scheme of hydrogen bonds and all $\mathrm{H} \cdots \mathrm{H}$ contacts exceed $2 \AA$. For example, atom $\mathrm{H} 5 w 1$ is $2.01 \AA$ from $\mathrm{H} 4 w 1$ and the minor O5 w^{\prime} component forms only one hydrogen bond whereas the major O5w component forms two.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable

metal-organic papers

Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, o1856-o1858.
Gao, S., Li, J.-R., Liu, J.-W., Gu, C.-S. \& Huo, L.-H. (2004). Acta Cryst. E60, m22-m23.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. \& Huo, L.-H. (2004). Chin. J. Struct. Chem. 23, 835-838.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Zhao, J.-G., Gu, C.-S., Gao, S., Huo, L.-H. \& Liu, J.-W. (2005). Acta Cryst. E61, m33-m35.
Zhao, J.-G., Gu, C.-S., Huo, L.-H., Liu, J.-W. \& Gao, S. (2005). Acta Cryst. E61, m76--m78.

