Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,^a Li-Hua Huo,^a Zhao-Peng Deng^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.003 Å Disorder in solvent or counterion R factor = 0.024 wR factor = 0.063 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[diaqua(imidazole)cadmium(II)]µ-3-carboxylatophenoxyacetato] trihydrate]

In the title compound, $[Cd(C_9H_6O_5)(C_3H_4N_2)(H_2O)_2]\cdot 3H_2O$, the carboxylatophenoxyacetate dianion links the water- and imidazole-coordinated Cd atoms into a zigzag chain that runs along the *c* axis of the monoclinic unit cell; the chelation by the carboxylate arms leads to a seven-coordinate pentagonal– bipyramidal geometry for the Cd atom. The chains are linked into a three-dimensional network by hydrogen bonds. Received 7 March 2005 Accepted 9 March 2005 Online 18 March 2005

Comment

Structural reports on metal derivatives of 3-carboxyphenoxyacetic acid (Gao, Li et al., 2004; Li et al., 2004) comprise one part of the studies on metal complexes of the 2-, 3- and 4-carboxyphenoxyacetic acids. An earlier attempt to synthesize the benzimidazole adduct of cadmium 3-carboxyphenoxyacetate by reacting the cadmium carboxylate, prepared in situ, yielded only benzimidazolium hydrogen bis(3-carboxyphenoxyacetate) (Gao, Huo et al., 2004). In other attempts to synthesize adducts with nitrogen-containing heterocycles, the metal complexes that are isolated have the 3carboxyphenoxyacetate dianion uncoordinated to the metal atom (Zhao, Gu, Gao et al., 2005; Zhao, Gu, Huo et al., 2005). Possibly, the isolation of the present cadmium-imidazole adduct, (I), should be attributed to the particularly small size of the nitrogen-containing heterocycle, as well as the participation of the heterocycle in hydrogen-bonding interactions. The dianion chelates to two adjacent Cd atoms through its carboxylate arms; the four O atoms along with a water molecule constitute a pentagonal plane. The heterocycle and another water molecule occupy the apical sites (Fig. 1). The manner of bridging by the dianion leads to a helical chain that runs along the c axis (Fig. 2); the chains are linked into a threedimensional network by hydrogen bonds (Table 2).

Experimental

Cadmium dinitrate tetrahydrate (0.31 g, 1 mmol) was added to an aqueous solution of 3-carboxyphenoxyacetic acid (0.19 g, 1 mmol). The pH was adjusted to 7 with 0.1 *M* sodium hydroxide. Imidazole

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) plot of a portion of the chain of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii. The minor component of the disordered water molecule O5w is not shown. [Symmetry code: (i) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z.$]

Figure 2

ORTEPII (Johnson, 1976) plot of the polymeric chain structure. The uncoordinated water molecules are not shown.

(0.14 g, 2 mmol) was then added. Colorless crystals separated from the clear solution after several days. Analysis calculated for C12H20CdN2O10: C 31.02, H 4.34, N 6.03%; found: C 31.19, H 4.30, N 6.06%.

Crystal data

$\begin{split} & [\mathrm{Cd}(\mathrm{C}_9\mathrm{H}_6\mathrm{O}_5)(\mathrm{C}_3\mathrm{H}_4\mathrm{N}_2)-\\ & (\mathrm{H}_2\mathrm{O})_2]\cdot 3\mathrm{H}_2\mathrm{O} \\ & M_r = 464.70 \\ & \mathrm{Monoclinic}, \ P_{2,1}/n \\ & a = 8.574 \ (2) \ \text{\AA} \\ & b = 11.467 \ (2) \ \text{\AA} \\ & c = 18.374 \ (3) \ \text{\AA} \\ & \beta = 101.88 \ (3)^\circ \\ & V = 1767.9 \ (6) \ \text{\AA}^3 \\ & Z = 4 \end{split}$	$D_x = 1.746 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 15434 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 1.29 \text{ mm}^{-1}$ T = 295 (2) K Block, colorless $0.36 \times 0.25 \times 0.18 \text{ mm}$
Data collection	
Rigaki R-AXIS RAPID IP diffractometer ω scans Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.478, T_{max} = 0.801$ 16669 measured reflections	3995 independent reflection 3607 reflections with $I > 2\sigma$ $R_{int} = 0.018$ $\theta_{max} = 27.5^{\circ}$ $h = -11 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2]$

Remement on r
$R[F^2 > 2\sigma(F^2)] = 0.024$
$wR(F^2) = 0.063$
S = 1.06
3995 reflections
237 parameters
H-atom parameters constrained

r(I)

+ 0.5011P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1				
Selected	geometric	parameters	(Å,	°).

Cd1-O1	2.418 (2)	Cd1 - O1w	2.270 (2)
Cd1-O2	2.398 (1)	Cd1 - O2w	2.350 (2)
Cd1-O4 ⁱ	2.424 (2)	Cd1-N1	2.244 (2)
Cd1-O5 ⁱ	2.484 (2)		
O1-Cd1-O2	53.98 (5)	$O4^i$ -Cd1-O5 ⁱ	53.00 (5)
$O1-Cd1-O4^{i}$	89.16 (5)	$O4^{i}-Cd1-O1w$	90.63 (8)
$O1-Cd1-O5^{i}$	140.81 (5)	$O4^i - Cd1 - O2w$	130.29 (6)
O1-Cd1-O1w	81.97 (6)	O4 ⁱ -Cd1-N1	90.60 (7)
O1 - Cd1 - O2w	138.24 (6)	$O5^{i}-Cd1-O1w$	88.01 (7)
O1-Cd1-N1	93.80 (6)	$O5^{i}-Cd1-O2w$	77.38 (6)
$O2-Cd1-O4^{i}$	143.11 (5)	O5 ⁱ -Cd1-N1	96.11 (6)
$O2-Cd1-O5^{i}$	162.83 (5)	O1w-Cd1-O2w	84.25 (7)
O2-Cd1-O1w	86.15 (7)	O1w-Cd1-N1	175.58 (7)
O2-Cd1-O2w	85.97 (6)	O2w-Cd1-N1	98.17 (7)
O2-Cd1-N1	90.32 (6)		

Symmetry code: (i) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1 <i>w</i> −H1 <i>w</i> 1····O5 <i>w</i>	0.82	1.94	2.760 (3)	171
$O1w - H1w2 \cdots O4w^{ii}$	0.81	1.85	2.662 (3)	176
$O2w - H2w1 \cdots O5w^{ii}$	0.82	2.03	2.828 (3)	163
$O2w - H2w2 \cdot \cdot \cdot O2^{iii}$	0.83	1.88	2.703 (2)	171
$O3w - H3w1 \cdots O4^{iii}$	0.82	2.02	2.809 (2)	161
$O3w - H3w2 \cdots O5^{i}$	0.83	2.03	2.839 (2)	163
$O4w - H4w2 \cdots O3w^{iv}$	0.83	1.96	2.775 (3)	172
$O4w - H4w1 \cdots O1$	0.83	1.84	2.663 (3)	172
$O5w - H5w1 \cdots O4w$	0.83	1.97	2.729 (5)	152
$O5w - H5w2 \cdots O5^{v}$	0.82	2.16	2.784 (3)	133
$O5w' - H5w3 \cdots O5^{v}$	0.83	2.30	2.799 (8)	119
N2-H2 n ···O3 w^{vi}	0.86	1.97	2.823 (3)	170

Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) 1 - x, 1 - y, 1 - z; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (v) 2 - x, 2 - y, 1 - z; (vi) -x, 1 - y, 1 - z.

The carbon-bound H atoms were positioned geometrically (C-H = 0.93 Å for the aromatic H atoms and 0.97 Å for the others) and were included in the refinement with $U_{iso}(H)$ values set at $1.2U_{eq}(C)$ in the riding-model approximation. The amino H atom of the nitrogen-containing heterocycle was similarly treated [N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$]. One of the uncoordinated water molecules, O5w, is disordered over two positions; the occupancies refined to 0.747 (7):0.253 (7). The H atoms of the water molecules, including the disorder components, were placed at chemically sensible positions on the basis of O-H distances of approximately 0.82 Å and hydrogen bonds of approximately 2 Å. These were not refined; their displacement parameters were also set to 1.2 times U_{eq} of the O atoms. Positioning the H atoms in this way leads to a satisfactory scheme of hydrogen bonds and all $H \cdots H$ contacts exceed 2 Å. For example, atom H5w1 is 2.01 Å from H4w1 and the minor O5w' component forms only one hydrogen bond whereas the major O5w component forms two.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054G036) and the University of Malaya for supporting this study.

References

- Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, o1856–o1858.
- Gao, S., Li, J.-R., Liu, J.-W., Gu, C.-S. & Huo, L.-H. (2004). Acta Cryst. E60, m22–m23.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, S.-J., Gu, C.-S., Gao, S., Zhao, H., Zhao, J.-G. & Huo, L.-H. (2004). Chin. J. Struct. Chem. 23, 835–838.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Zhao, J.-G., Gu, C.-S., Gao, S., Huo, L.-H. & Liu, J.-W. (2005). Acta Cryst. E61, m33–m35.
- Zhao, J.-G., Gu, C.-S., Huo, L.-H., Liu, J.-W. & Gao, S. (2005). Acta Cryst. E61, m76-m78.